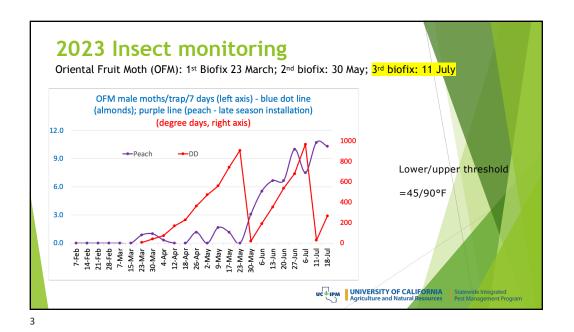
2023 IPM Update - 18 July

Jhalendra Rijal, Ph.D. Area IPM Advisor UC Cooperative Extension - San Joaquin, Stanislaus, Merced

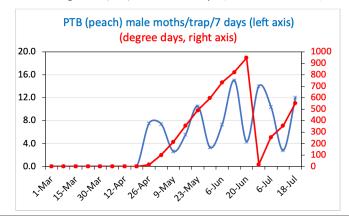
,

Monitoring


- ▶ Use traps to monitor insect pests
- ▶ Keep trapping records
- ▶ Use biofix, *UCIPM guidelines*
- ▶ Use degree day models for making treatment decisions

Run Degree Days-UCIPM

For all of our degree-days calculation, we used CIMIS Station #206, Denair, Stanislaus County



2023 Insect monitoring ► Oriental Fruit Moth (OFM): ▶ 1st gen. biofix: 23 March ▶ 1st gen. spray timing (500 - 600DD): 13-17 May ▶ 2nd gen. Biofix: 30 May (DD as of 6/20: 537) ▶ 2nd gen. spray timing (400-500 DD): 15-19 June ▶ 3rd gen. Biofix: 11 July (DD as of 5/18): 266 ▶ 3rd gen. spray timing (400-500 DD): 22-25 July **Generation Length Spray Timing** (degree-days) (degree-days) 2nd 3rd **Early generation** Later generations 1st 920-1010 920-1010 920-1010 400-500 500-600

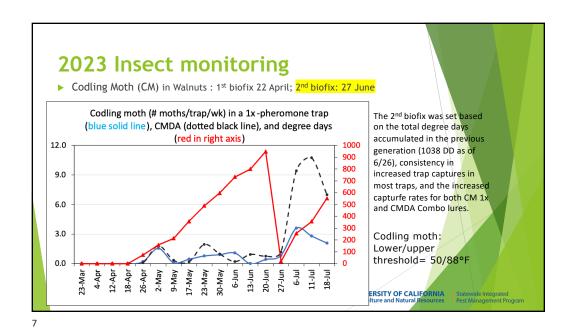
2023 Insect monitoring

▶ Peach Twig Borer (PTB): 1st Biofix: 22 April, 2nd biofix: 27 June; 3rd: 11 July

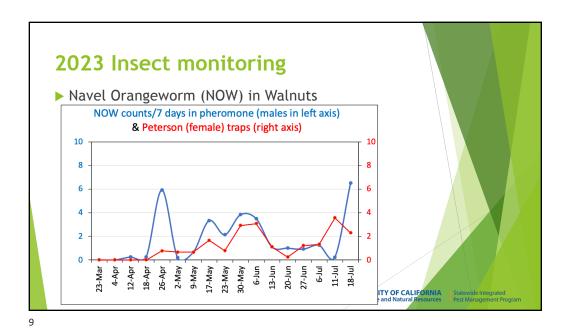
Increased capture rate on 27th June, plus total first-generation degree days hit around 1030 - avg. generation time. Those two factors used to set 27th June as the 2nd biofix for peach twig borer

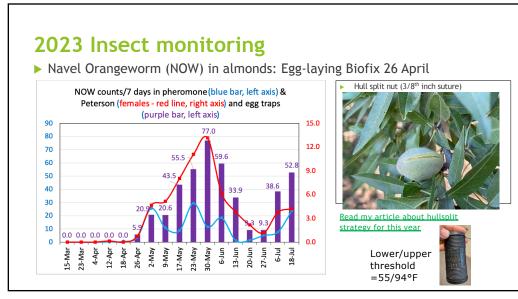
Lower/upper threshold =50/88°F

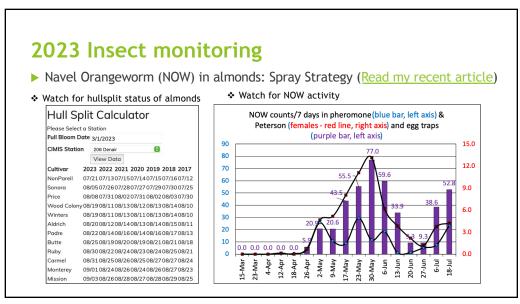
5

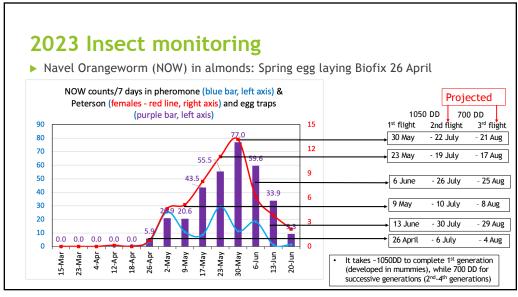

2023 Insect monitoring

- ▶ Peach Twig Borer (PTB):
- ▶ 1st biofix: 22 April
 - ► 1st gen. spray timing (400 500DD): 19-24 May
 - ▶ DD accumulation (as of 6/26): 1038
- 2nd biofix: 27 June
 - ▶ 2nd gen. spray timing (300 400DD): 8-13 July
 - ▶ 2nd gen. DD accumulation (as of 7/18): 552


Generation Length (degree-days)			Spray Timing (degree-days)			
1st	2nd 3rd		Early Generation	Later Generations		
1030	1030	1030	400-500	300-400		


6


de Integrated nagement Program

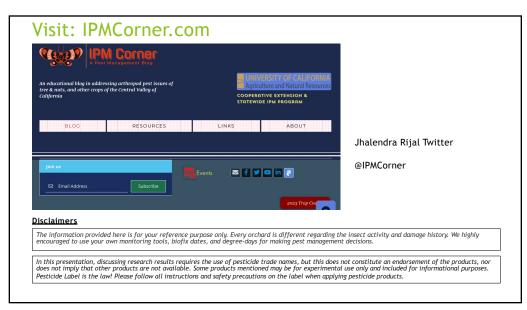


2023 Insect monitoring ► Codling Moth (CM): ▶ 1st biofix: 22 April ▶ 1st gen. spray timing: 1A flight (300 DD): 12-14 May 1B flight (600 - 700 DD): 29 May - 3 June DD accumulation (as of 6/26): 1038 2nd biofix: 27 June ▶ 2nd gen. DD accumulation (as of 7/14): 435 ▶ 2nd gen. spray timing - predicted (300 DD): 9 July **Generation Length** Spray Timing (degree-days) (degree-days) Later generations 1st 2nd 3rd Early generation 1060 1100 1A Peak: 300 1B Peak: 600-700 UNIVERSITY OF CALIFORNIA
Agriculture and Natural Resources Statewide Integrated Pest Management Program

Almond strands were used 20 nuts/strand; 15 replicates/treatment; Treated with insecticides, Left for 2 weeks in the orchard, evaluated nuts for damage Done in the first wk of August (3rd gen.) % damage by NOW 6.00 4.00 2.00 0.00 4.00 2.00 Angust Englished Register Registe

13

Efficacy of various insecticide products against navel orangeworm. The products were applied in 1-ft long strand of 20 nuts glued together and put them out in the orchard to allow navel orangeworm for egg laying **Nut infestation by navel orangeworm - 2020 **Nut infestation by navel orangeworm - 2021 **On the infestation by na


- Insecticide coverage is important
- Sprayed in the fieldCollected fruits from
- low and high tree heights and eggs/larvae were exposed to the fruits
- For the same tractor speed, two different heights, there is a clear difference on mortality (dotted box)

Authros: Joel P Siegel, Mathew M Strmiska, Franz JA Niederholzer, D Ken Giles, Spenser S Walse

https://doi.org/10.1002/ps.5265

Ground speed x tree height

Ground speed (k	ph) Day	Height	Live	Dead	% Mortality	Eggs
	1					
2.90 (= 1.8 m	nph)	High (17-20 ft)	9	791	98.9	800
2.90		Low (5-7 ft)	25	1455	98.3	1480
3.86 (= 2.4 m	nph)	High	8	792	99.0	800
3.86		Low	11	789	98.6	800
	14					
2.90 (= 1.8 m	nph)	High	66	1534	95.9 A	1600
2.90		Low	54	1546	95.6 A	1600
3.86 (= 2.4 m	nph)	High	206	1394	87.1 B	1600
3.86		Low	68	1532	95.8 A	1600

